MCQ on Group Velocity, Wave Packet

- Which of the following is the correct expression for the group velocity?
 a) υλ
 b) dω/dυ
 c) dE/dk
 - d) $dE/\hbar dk$

Answer: [d]

- 2. Planck's constant has unit s of
 - a) J
 - b) s
 - c) J/s
 - d) J.s
 - Answer: [d]
- 3. $v_p = v_g$ suggests that,
 - a) Particle is lagging behind the wave packet
 - b) Particle is travelling with the wave packet,
 - c) particle is travelling ahead of wave packet
 - d) Particle & wave packet have independent motion Answer: [b]
- - d) Quantum Particle
 - Answer: [c]

MCQ on De Broglie Wavelength.

- 5. Which of the following is not a variable
 a) Wavelength
 b) Velocity
 c) Planck's Constant
 d) Location
 Answer: [c]
- 6. The concept of matter wave was suggested by_____
 - a) Heisenberg
 - b) de Broglie
 - c) Schrodinger

d) Laplace Answer: [b]

- 7. if kinetic energy of electron doubles, its de-Broglie wavelength changes by a factor
 a) 0.5
 b) 2
 - c) 3

d) 0.707 Answer: [d]

- 8. What is the main point of the de Broglie equation?
 - a) the position of light cannot be precisely determined
 - b) matter has wave-like properties
 - c) matter only behaves like a particle
 - d) Einstein's theory of relativity was incorrect
 - Answer: [b]
- 9. Among the following particles, which one will be have smallest wavelength associated with it for same velocity
 - a) Proton
 - b) Electron
 - c) Alpha particled) Cricket ball
 - Answer: [d]
- 10. The de Broglie wavelength of an electron accelerated to a potential of 400 V is approximately
 - a) 0.03 nm b) 0.04 nm c) 0.12 nm d)0.06 nm Answer: [d]
- 11. The electron is accelerated from rest between two points which has potential of 20V and 40 V respectively. Associated De-Broglie wavelength is
 - a) 7.5 A° b) 2.75 A° c) 0.75 A° d) 2.75 m Answer: [b]

- 12. If the kinetic energy of a free electron doubles, its de Broglie wavelength changes by the factor of
 - a) 2
 b) 1/2
 c) √2
 - d) $1/\sqrt{2}$
 - Answer: [d]
- 13. Which of the following is not a characteristic of wave function?
 - a) Continuous
 b) Single valued
 c) Differentiable
 d) Physically Significant
 Answer: [d]
- 14. Which two characteristics are variables in Heisenberg's uncertainty principle?
 - a) wavelength and distance
 - b) position and momentum
 - c) charge and displacement
 - d) atomic radius and frequency
 - Answer: [b]
- 15. Calculate the minimum uncertainty in the momentum of a ⁴He atom confined to 0.40 nm.
 a) 2.02 X 10⁻²⁵ kg m/s
 b) 2.53 X 10⁻²⁵ kg m/s
 c) 2.64 X 10⁻²⁵ kg m/s
 d) 2.89 X 10⁻²⁵ kg m/s
 Answer: [c]
- 16. The uncertainty in the location of a particle moving with velocity 7.28 X 10⁷m /s is two times its de-Broglie wavelength. What is the uncertainty in measuring the velocity?
 a) 5.79 X 10⁶ m/s
 b) 6.12 X 10⁶ m/s
 c) 7.63 X 10⁶ m/s
 d) 8.45 X 10⁶ m/s
 Answer: [a]
- 17. Energy of a wave divided by its momentum gives
 - a) Group velocity
 b) Classical Velocity
 c) Phase Velocity
 d) Wave velocity
 Answer: [c]

MCQ on Wave Function

- 18. Which of the following can be a wave function?
 - a) tan x
 - b) sin x
 - c) $\cot x$
 - d) sec x

Answer: [b]

- 19. Wave function Ψ of a particle is
 - a) a real quantity
 - b) a complex quantity
 - c) an imaginary quantity
 - d) none of these
 - Answer: [b]
- 20. Which of the following is not a physical requirement for a wave valid wave function?a) single valued;
 - b) continuous in a given region;
 - c) can be infinite;
 - d) none of these;
 - Answer: [c]
- 21. Which of the following quantities is proportional to the probability density at a point?
 - a) the wavefunction
 - b) the square of the wave function
 - c) the de Broglie wavelength
 - d) the reciprocal of the de Broglie wavelength
 - Answer: [b]

22. The total probability of finding the particle in space must be _____

- a) zero
- b) unity
- c) infinity
- d) double
- Answer: [b]
- 23. The probability density of a particle is
 - a) negative.
 - b) can be negative or positive.
 - c) always positive
 - d) Complex quantity

Answer: [c]

24. The square of the magnitude of the wave function is called_____

- a) current density
- b) probability density
- c) zero density
- d) volume density

Answer: [b]

25. If Ψ is the wave function, the probability density function is given by

- a) |Ψ|
- b) $|\Psi|^2$
- c) $|\Psi|^3$
- d) $|\Psi|^4$
- Answer: [b]
- 26. Which of the following is not a characteristic of wave function?
 - a) Continuous
 - b) Single valued
 - c) Differentiable
 - d) Physically Significant
 - Answer: [d]

Schrodinger's Time Independent Wave Equation

- 27. Which of the following is the correct expression for the Schrödinger wave ?
 - a) $i\hbar(d\Psi/dt) = -i(\hbar/2m) \partial \Psi/\partial x + V\Psi$ b) $i\hbar(d\Psi/dt) = -i(\hbar/2m) \partial^2 \Psi/\partial x^2 + V\Psi$
 - c) $i\hbar(d\Psi/dt) = -i(\hbar^2/2m)\partial\Psi/\partial x + V\Psi$
 - d) $i\hbar(d\Psi/dt) = -i(\hbar^2/2m) \partial^2 \Psi/\partial x^2 + V\Psi$ Answer: [d]
- 28. Schrodinger's equation described the
 - a) procedure for splitting an atom
 - b) complement of the wave function
 - c) behaviour of "matter" waves
 - d) motion of light
 - Answer: [c]
- 29. If the particle moving in a _____ potential then the solution of the wave equation are described as a stationary states
 - a) time independent
 - b) time dependent

c) velocity dependentd) velocity independentAnswer: [a]

- 30. The operator ∇^2 is called _____ operator
 - a) Hamiltonian
 - b) Laplacian
 - c) Poisson
 - d) vector
 - Answer: [b]
- 31. For a quantum wave particle, E = _____
 - a) *ħ* k
 - b) ħ ω
 - c) $\hbar \omega/2$
 - d) ħ k/2
 - Answer: [b]
- 32. The Schrodinger wave equation is _____
 - a) Linear
 b) Quadratic
 c) Differential equation
 d) Derivable
 Answer: [a]
- 33. If Ψ_1 and Ψ_2 are two solutions of Schrodinger Wave equation then which of the following is also a solution?
 - a) Ψ_1/Ψ_2 b) $\Psi_1\Psi_2$ c) Ψ_2/Ψ_1
 - d) $\Psi_1 + \Psi_2$ Answer: [d]

 - 34. How is information extracted from a wave function?
 - a) Expectation valueb) Operators
 - c) Differential
 - d) Partial differential
 - Answer: [a]
 - 35. Which function is considered independent of time to achieve the steady state form? a) Ψ

b) $d\Psi/dt$ c) $d^2\Psi/dx^2$ d) V Answer: [d]

- 36. The values of Energy for which Schrodinger's steady state equation can be solved is called as
 a) Figure Vectors
 - a) Eigen Vectors
 b) Eigen Values
 c) Eigen Functions
 d) Operators
 Answer: [b]
- 37. For a box with infinitely hard walls, the potential is maximum at _____
 - a) L b) 2L c) L/2 d) 3L Answer: [a]

38. Which of the following is known as the Schrodinger equation?

a) E = hvb) $E = mc^2$ c) $\lambda = h/p$ d) $H\psi = E\psi$ Answer: [d]

MCQ on Particle In a Box

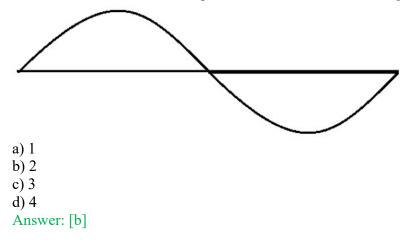
- 39. The walls of a particle in a box are supposed to be _____
 - a) Small but infinitely hard
 - b) Infinitely large but soft
 - c) Soft and Small
 - d) Infinitely hard and infinitely large
 - Answer: [d]
- 40. The energy of a particle in a infinite potential box is _
 - a) Proportional to length of box
 - b) Inversely proportional to Square of length of box
 - c) Inversely proportional to length of box
 - d) None of these

Answer: [b]

- 41. If width of infinite potential box is reduced by factor 2, energy of particle will be_
 a) Increased by 2 times
 b) Decreased by 2 times
 c) Increased by 4 times
 d) Decreased by 4 times
 Answer: [c]
- 42. If width of infinite potential box is increased by factor 3, energy of particle will be_a) Increased by 9 timesb) Decreased by 3 timesc) Increased by 3 times
 - d) Decreased by 9 times

Answer: [d]

- 43. The wave function for a particle must be normalizable because:
 - a) the particle's charge must be conserved
 b) the particle's momentum must be conserved
 c) the particle must be present somewhere
 d) the particle's angular momentum must be conserved
 Answer: [c]

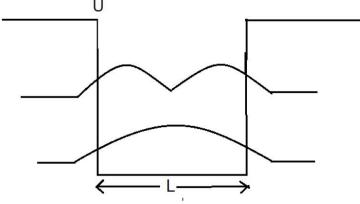

44. The wave function of the particle lies in which region?

- a) x > 0 b) x < 0 c) 0 < X < L d) x > L Answer: [c]
- 45. The Eigen value of a particle in a box is _____
 - a) L/2 b) 2/L c) $\sqrt{(L/2)}$ d) $\sqrt{(2/L)}$ Answer: [d]

46. What is the minimum Energy possessed by the particle in a box?

a) Zero b) $\pi^{2}\hbar^{2}/2mL^{2}$ c) $\pi^{2}\hbar^{2}/2mL$ d) $\pi^{2}\hbar/2mL$ Answer: [b]

- 47. The wave function of a particle in a box is given by _____ a) $\sqrt{(2/L)} \sin(n\pi x/L)$ b) $\sqrt{(2/L)} \sin(nx/L)$ c) $\sqrt{(2/L)} \sin(x/L)$ d) $\sqrt{(2/L)} \sin(\pi x/L)$ Answer: [a]
- 48. The wave function for which quantum state is shown in the figure?



- 49. Calculate the Zero-point energy for a particle in an infinite potential well for an electron confined to a 1 nm atom.
 a) 3.5 X 10⁻²⁰ J
 - a) $5.5 \times 10^{-7} \text{ J}$ b) $4.0 \times 10^{-20} \text{ J}$ c) $6.0 \times 10^{-20} \text{ J}$ d) $5.0 \times 10^{-20} \text{ J}$ Answer: [c]
- 50. An electron is in an infinite potential well that is 9.6- nm wide. The electron makes the transition from the n=14 to the n=11 state. The wavelength of the emitted photon is closest to:
 - a) 3400 nm b) 4100 nm c) 2800 nm d) 4700 nm Answer: [b]

51. The ground state energy level for a proton trapped in an infinite potential well of length 5x10⁻¹⁵ m is
a) 0 MeV
b) 4.1x10⁻⁸ MeV
c) 8.2 MeV
d) 32.3 MeV
Answer: [c]

MCQ on Finite Potential Well

- 52. In a finite Potential well, the potential energy outside the box is _____
 - a) Zero
 - b) Infinite
 - c) Constant
 - d) Variable
 - Answer: [c]
- 53. The wave function of a particle in a box is given by _____
 - a) A sin(kx)
 b) A cos(kx)
 c) Asin(kx) + Bcos(kx)
 d) A sin(kx) B cos(kx)
 Answer: [c]
- 54. What does the following figure shows?

- a) Wave function for Infinite Potential Well
- b) Wave function for Finite Potential Well
- c) Probability Density function for Infinite Potential Well
- d) Probability Density function for Finite Potential Well

Answer: [d]

- 55. For a particle inside a box of finite potential well, the particle is most stable at what position of x?
 - a) x > L
 b) x < 0
 c) 0 < x < L
 d) Not stable in any state
 Answer: [c]

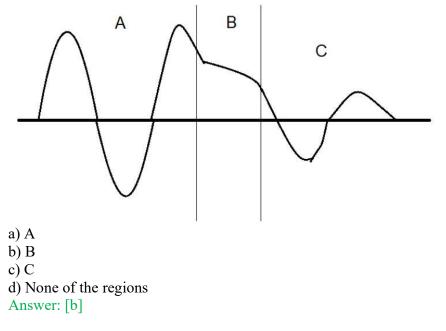
MCQ on Tunnelling Effect

- 56. The transmission based on tunnel effect is that of a plane wave through a _____
 - a) Circular Barrier
 - b) Opaque Object
 - c) Rectangular Barrier
 - d) Infinitely small barrier
 - Answer: [c]

57. The particle has a finite, non-zero, potential for the region

a) x > 0 b) x < 0 c) 0 < X < a d) x > a Answer: [c]

58. Tunnel effect is notably observed in the case of


- a) X-rays
 b) Gamma rays
 c) Alpha Particles
 d) Beta Particles
 Answer: [c]
- 59. 4 MeV alpha particle crosses the 25 MeV potential barrier inside the nucleus due to
 - a) Tunnelling Effect
 - b) Compton Effect
 - c) Photoelectric effect
 - d) Uncertainty principle.
 - Answer: [a]

60. The solution of Schrodinger wave equation for Tunnel effect is of the form

- a) Ae^{ikx+} Be^{ikx}
- b) Ae^{ikx}– Be^{ikx}
- c) Ae^{ikx}+ Be^{-ikx}
- d) Ae^{ikx}– Be^{-ikx}

Answer: [c]

- 61. The particle with wave function $Ae^{kx} + Be^{-kx}$ represents
 - a) Oscillating particle
 - b) Moving Particle
 - c) Probable Particle
 - d) No such wave function
 - Answer: [c]
- 62. In which of the following regions is E < V?

- 63. What happens to a tunnel diode when the reverse bias effect goes beyond the valley point?
 - a) it behaves as a normal diode
 - b) it attains increased negative slope effects
 - c) reverse saturation current increases
 - d) becomes independent of temperature
 - Answer: [a]
- 64. If 'X' corresponds to a tunnel diode and 'Y' to an avalanche diode, then
 - a) X operates in reverse bias and Y operates in forward bias
 - b) X operates in reverse bias and Y operates in reverse bias
 - c) X operates in forward bias and Y operates in forward bias
 - d) X operates in forward bias and Y operates in reverse bias

Answer: [d]

65. Tunnel diode has a very fast operation in___

- a) gamma frequency region
- b) ultraviolet frequency region
- c) microwave frequency region
- d) radio frequency region

Answer: [c]

66. The depletion layer of tunnel diode is very small because _____

a) its abrupt and has high dopants

b) uses positive conductance property

c) its used for high frequency ranges

d) tunneling effect

Answer: [a]

- 67. With interments of reverse bias, the tunnel current also increases because_
 - a) electrons move from valance band of p side to conduction band of n side
 - b) fermi level of p side becomes higher than that of n side
 - c) junction current decreases
 - d) unequality of n and p band edge
 - Answer: [a]
- 68. Tunnel diodes are made up of_____
 - a) Germanium and silicon materials
 - b) AlGaAs
 - c) AlGaInP
 - d) ZnTe

Answer: [a]

- 69. The tunneling involves
 - a) acceleration of electrons in p side
 - b) movement of electrons from n side conduction band to p side valance band
 - c) charge distribution management in both the bands
 - d) positive slope characteristics of diode
 - Answer: [b]
- 70. The range of tunnel diode voltage V_D , for which slope of its V-I characteristics is negative would be? (The V_P is the peak voltage and V_V is the valley voltage).
 - a) $V_D > 0$ b) $0 < V_D < V_p$ c) $V_V > V_D > V_p$ d) $V_V > V_D$ Answer: [c]

- 71. The use of a scanning tunnelling microscope places a conducting tip
 - a) 0.5 to 0.8 nm from the surface
 - b) 0.4 to 0.7 nm from the surface
 - c) 0.4 to 0.9 nm from the surface
 - d) 0.3 to 0.5 nm from the surface

Answer: [b]

- 72. In STM, Surface being imaged must be,
 - a) Magnetic in nature
 - b) Dielectric in nature
 - c) Able to conduct electricity
 - d) None of above

Answer: [c]

- 73. The scanning tunnelling microscope works due to
 - a) Interference
 - b) Tunnelling effect shown by electrons
 - c) Diffraction of electrons
 - d) None of above

Answer: [b]

- 74. How does a scanning tunnelling microscope map a surface?
 - a) by measuring the size of each individual electron
 - b) by measuring the voltage created by electron transfer
 - c) by measuring the size of each atom of the surface
 - d) by measuring the current due to tunnelling electrons Answer: [d]
- 75. Lateral resolution of STM is,
 - a) 0.1 nm
 - b) 1 nm
 - c) 10 nm
 - d) 0.01 nm
 - Answer: [a]

MCQ on Quantum Computing

76. Quantum Computing involves ______ of qubits,

- a) Superposition
- b) Entanglement

- c) Superposition & entanglement d) De-coherence Answer: [c]
- 77. Qubits can be made of using,
 - a) Electron's spin & photon's polarization
 - b) Electron's motion
 - c) Photon's frequency
 - d) Photon's momentum

Answer: [a]

- 78. Qubits can hold,
 - a) Only 0 state

 - b) Only 1 statec) Superposition of 0 & 1 state
 - d) None of above
 - Answer: [c]
- 79. High speed of quantum computing is possible due to ______ of qubits
 - a) Superposition
 - b) Entanglement
 - c) Superposition & entanglement
 - d) De-coherence
 - Answer: [c]
- 80. The difference between digital & quantum computing,
 - a) Strict discrete nature of 0 & 1 state in digital computing
 - b) Superposition of 0 & 1 in qubits
 - c) Entanglement of qubits
 - d) All of above

Answer: [d]